

11 February 2022

Further strong drilling results from Tujuh Bukit Copper Project

PT Merdeka Copper Gold Tbk (IDX: MDKA, "Merdeka", "Company") is pleased to provide this update covering the most recent drilling from the Tujuh Bukit Copper Project ("TB Copper", "the Project") (MDKA 100%) located on the eastern end of the island of Java, Indonesia. All seven recent drill holes returned significant intercepts of copper and gold mineralisation.

The focus of the current drilling program is an area which contains the largest zone of contiguous high grade copper and gold mineralisation identified to date which is well positioned for drilling from the current decline location.

- The most recent seven holes of the current infill drilling program have all returned intercepts in line with, or exceeding expectations.
- Selected results from the latest drilling include¹:
 - 595.1 metres @ 0.9 % Cu and 1.0 g/t Au from 98 metres in UHGZ-21-072 (including 496 metres @ 1.0 % Cu and 1.2 g/t Au from 102 metres)
 - 674 metres @ 0.6% Cu and 0.7 grams/tonne Au from 150 metres in GTD-21-679 (including 238 metres @ 0.9% Cu and 1.2 grams/tonne Au from 292 metres)
 - 605.3 metres @ 0.6% Cu and 0.6 grams/tonne Au from 282 metres in UHGZ-21-069 (including 156 metres @ 0.7% Cu and 0.9 grams/tonne Au from 282 metres and 228 metres @ 0.8% Cu and 0.6 grams/tonne Au from 494 metres)
 - 430 metres @ 0.7% Cu and 0.6 grams/tonne Au from 0 metres in UHGZ-21-064 (including 284 metres @ 0.8% Cu and 0.6 grams/tonne Au from 0 metres and 74 metres @ 0.6% Cu and 0.5 grams/tonne Au from 320 metres)

The full copper and gold intercepts discussed in this report are listed in Table 2.

2022 RESOURCE DEFINITION PROGRAM

The 2022 Resource Definition program is focusing on the top 500 to 600 metres of the Tujuh Bukit Copper Project Mineral Resource which contains an Exploration Target ranging from 250-300 Mt @ 0.7-0.9 % Cu & 0.7-0.9 grams/tonne Au.

The current Resource Definition drilling schedule is prioritising the drilling the Southern and Western parts of the resource in areas of contiguous high grade copper and gold mineralisation which were identified from drilling conducted in 2021. In addition, data collection for permitting, resource estimation, and subsequent mining and other studies is ongoing.

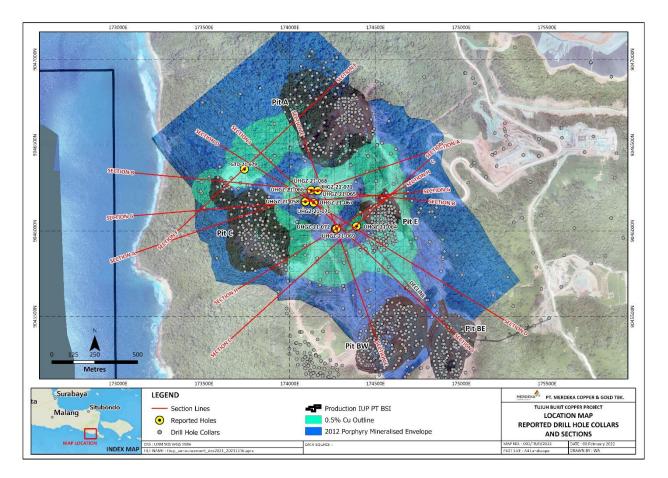


Figure 1: Location map of Tujuh Bukit Copper Project showing reported drill hole collars and sections, 2012 Mineralised outline, 0.5% copper contour and surface features.

DRILLING RESULTS

Drilling is conducted from a limited number of underground drilling locations, and therefore drilling is not on regularly spaced sections. For ease of reference, the drill holes reported have been grouped into five "drilling sections" (sections A to E) as shown in Figure 1. On each section, the significant intercepts given in the table have a reference for locating them on the drilling section figure.

Drilling Section A – Drill holes UHGZ-21-065, UHGZ-21-068, and UHGZ-21-071

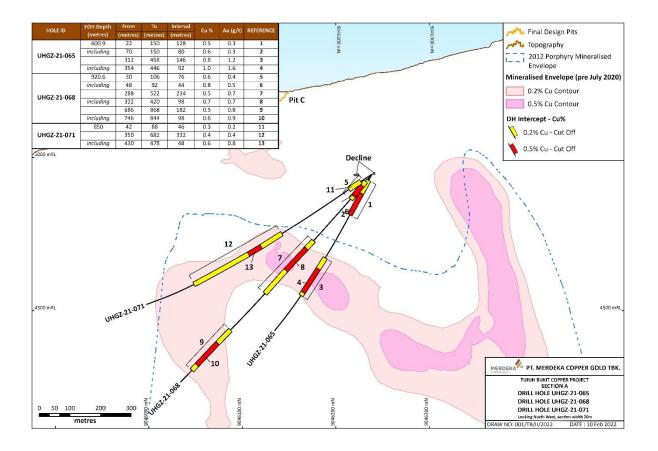
Drilling on Section A followed on from the encouraging results reported previously (<u>October 2021 Drill</u> <u>Results</u>) in hole UHGZ-21-055, and has confirmed the mineralised continuity of the western area of the porphyry system at depth.

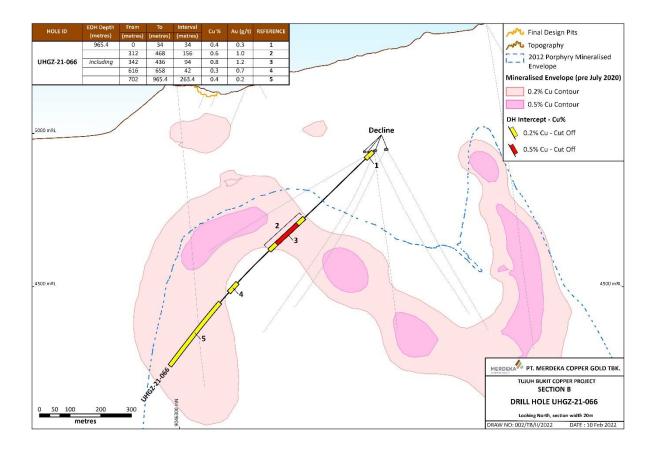
Drill hole UHGZ-21-065 successfully achieved the planned depth of 600.9 metres, and returned an excellent intercept of 146 metres @ 0.8% Cu and 1.2 g/t Au from 312 metres, extending the previously interpreted high grade zone along the west zone of the porphyry system in this area.

Drill hole UHGZ-21-068 successfully achieved planned depth of 920.6 metres, and returned two mineralised intercepts, 234 metres @ 0.5% Cu and 0.7 g/t Au from 288 metres, and 182 metres @ 0.5% Cu and 0.8 g/t Au from 686 metres. The first intersection has infilled a previous gap in the mineralisation in the central area of the deposit, while the second has continued the western zone of the porphyry system at depth.

Drill hole UHGZ-21-071 successfully achieved planned depth of 850 metres and returned a mineralised intercept of 332 metres @ 0.4% Cu and 0.4 g/t Au from 350 metres, including 48 metres @ 0.6% Cu and 0.8 g/t Au from 430 metres. This intersection has extended the known mineralisation in the upper area of the deposit, and successfully identified the outer boundary of the mineralised domain.

In addition, UHGZ-21-065 and UHGZ-21-068 intercepted a high-grade zone near the decline, reporting intercepts of 128 metres @ 0.5% Cu and 0.3 g/t Au from 22 metres in UHGZ-21-065, and 76 metres @ 0.6% Cu and 0.4 g/t Au from 30 metres in UHGZ-21-068.




Figure 2: Drill section A, showing drill hole UHGZ-21-065, UHGZ-21-068, and UHGZ-21-071 along with mineralised envelopes and drilling intercept information.

Drilling Section B – Drill hole UHGZ-21-066

Drill hole UHGZ-21-066 was drilled to infill a large gap in northwest area of the mineralisation, and to follow up on the previous mineralised intercept in UHGZ-21-043.

The hole ended at 965.4 metres (planned 1,000 metres) due to drilling difficulties associated with ground conditions and the depth of the hole. It returned a significant intercept of 156 metres @ 0.6% Cu and 1.0 g/t Au from 312 metres, and 263.4 metres @ 0.4% Cu and 0.2 g/t Au from 702 metres (to the end of the hole). This has closed a gap in the previously identified mineralization. Further drilling to target the western depth extension of the mineralisation in this area is planned to be conducted from an alternative (deeper) drilling location.

Figure 3: Drill section B, showing drill holes UHGZ-21-066 along with mineralised envelopes and drilling intercept information.

Drilling Section C – Drillhole UHGZ-21-064

Drill hole UHGZ-21-064 was drilled to infill results from previous drilling in the southwest area of the mineralisation.

The hole successfully intersected mineralisation from the start of hole, returning an intercept of 430 metres @ 0.7 % Cu and 0.6 g/t Au. This mineralisation was outside the previously interpreted mineralisation envelope and has extended the mineralised domain in this area.

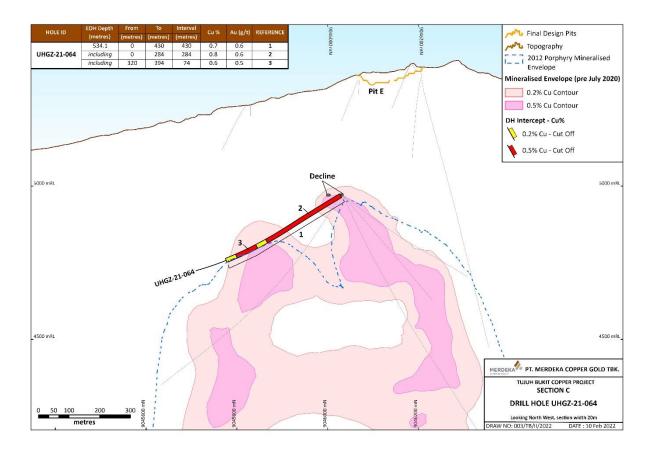


Figure 4: Drill section C, showing drill hole UHGZ-21-064 along with mineralised envelopes and drilling intercept information.

Drilling Section D – Drillhole UHGZ-21-067

Drill hole UHGZ-21-067 was designed to infill a gap in the interpretated mineralisation in the southern zone of the porphyry system. The hole was extended significantly past its original design depth and was completed at a depth of 1011 metres due to drilling issues caused by the length of the hole, and the relatively shallow dip.

The hole returned two mineralised intercepts of 362 metres @ 0.5 % Cu and 0.6 g/t Au from 290 metres, and 181 metres @ 0.4 % Cu and 0.3 g/t Au from 830 metres, before unfortunately ending in mineralisation. The hole has extended the mineralised envelope in the area above the previously interpreted mineralisation and will be followed up in subsequent drilling.

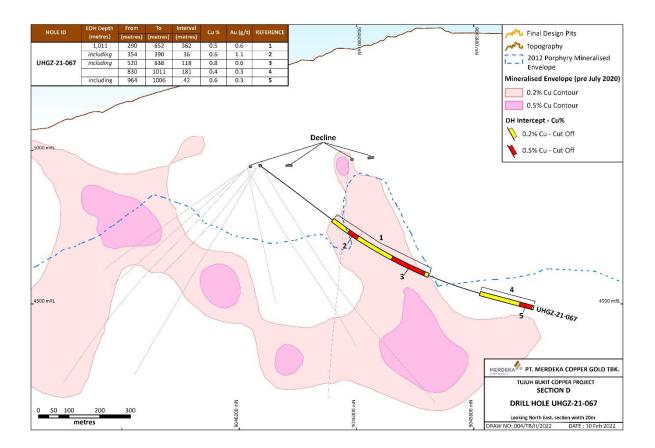


Figure 5: Drill section D, showing drill hole UHGZ-21-067 intercepting two mineralised envelopes and drilling intercept information.

Drilling Section E – Drillhole UHGZ-21-069

Drill hole UHGZ-21-069 was designed to target mineralisation along southern edge of the porphyry system at depth.

The hole was drilled to a depth at 887.3 metres (900 metres planned), and had to be completed before design depth due to drilling issues caused by the depth of hole. It returned an excellent mineralised intercept of 196 metres @ 0.8 % Cu and 1.4 g/t Au starting from 62 metres, including 140 metres @ 1.1 % Cu and 1.7 g/t Au which confirms the shallow-lying high grade mineralised envelope in this area. A deeper intercept of 605.3 metres @ 0.6 % Cu and 0.6 g/t Au starting from 282 metres was also intersected, with the mineralisation being open at depth.

Figure 6: Drill section E, showing drill hole UHGZ-21-069 along with open mineralised envelopes at depth and drilling intercept information.

Drilling Section F – Drillhole GTD-21-679

Drill hole GTD-21-679 was designed and drilled from the surface to infill the drilling in the northern zone of the porphyry system.

The hole was successfully drilled to 1169.7 metres (from surface) and intersected a mineralised intercept of 674 metres @ 0.6 % Cu and 0.7 g/t Au from 150 metres including 238 metres @ 0.9 % Cu and 1.2 g/t Au from 292 metres. This has confirmed the current interpretation for the mineralised system in the northern zone, while also extending the mineralisation above the previously interpreted mineralised envelope.

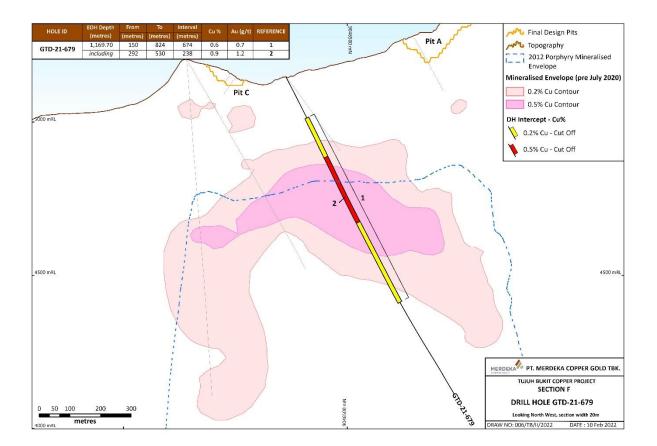


Figure 6: Drill section F, showing drill hole GTD-21-679 along with open mineralised envelopes at depth and drilling intercept information.

Drilling Section G – Drillhole UHGZ-21-058

Drill hole UHGZ-21-058 was designed to infill the drilling in the western part of the porphyry system.

The hole was successfully drilled to 795.4 metres and intersected a mineralised intercept of 486 metres @ 0.5 % Cu and 0.3 g/t Au from 282 metres including 62 metres @ 0.7 % Cu and 0.5 g/t Au from 368 metres, and 38 metres @ 1.3 % Cu and 0.4 g/t Au from 564 metres.

This hole has confirmed the tenure and location of the previously known mineralisation and extended the higher-grade zone approximately 150 metres toward the top of the know porphyry system. Additional drilling is planned to confirm the upper mineralisation extents in this area.

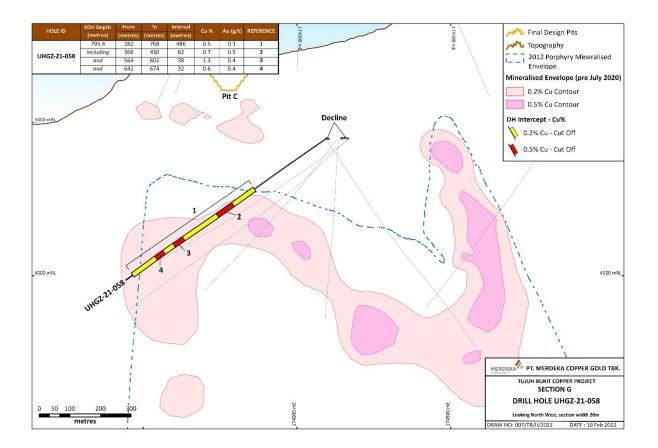


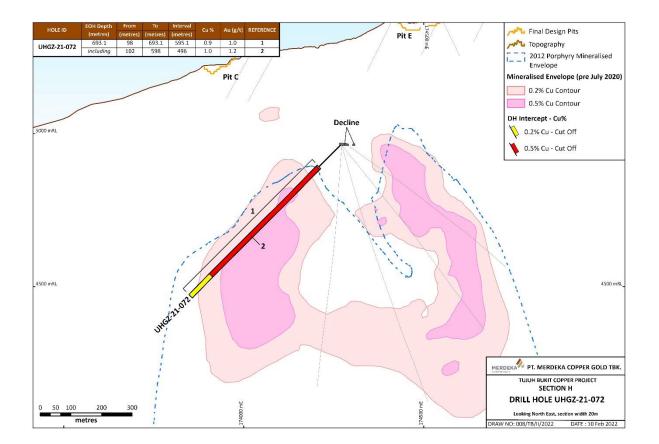
Figure 7: Drill section G, showing drill hole UHGZ-21-058 along with open mineralised envelopes at depth and drilling intercept information.

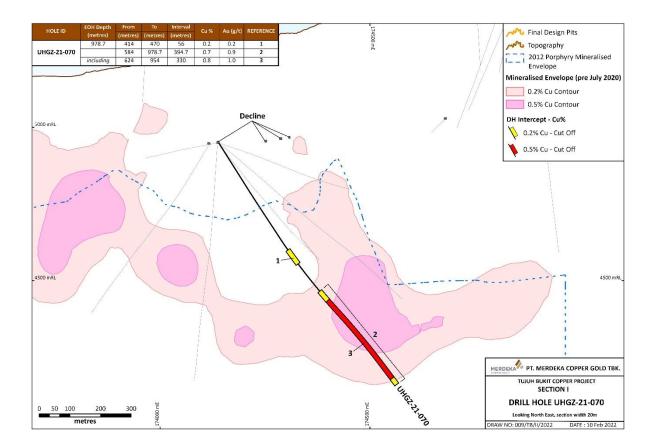
Drilling Section H – Drillhole UHGZ-21-072

Drill hole UHGZ-21-072 was designed to infill the drilling in the south western part of the porphyry system and identify the western boundary of the mineralisation in this area.

The hole was drilled to 693.1 metres, and prematurely ended in mineralisation. The hole intersected an impressive, mineralised intercept of 595.1 metres @ 0.9 % Cu and 1.0 g/t Au from 98 metres including 496 metres @ 1.0 % Cu and 1.2 g/t Au from 102 metres.

This hole has demonstrated high grade continuity in the south western part of the porphyry system, and extended the known high grade mineralisation at the top of the porphyry system. This hole will be followed up from a different orientation to locate the south western outer margin of the mineralisation.




Figure 8: Drill section H, showing drill hole UHGZ-21-072 along with open mineralised envelopes at depth and drilling intercept information.

Drilling Section I – Drillhole UHGZ-21-070

Drill hole UHGZ-21-070 was designed to infill a deeper zone of the southern part of the porphyry system and identify the outer mineralised boundary in this area.

The hole was drilled to 978.7 metres before ending before design depth due to drilling issues caused by the depth of the hole, ending in mineralisation. The hole intersected a mineralised intercept of 394.7 metres @ 0.7 % Cu and 0.9 g/t Au from 584 metres including 330 metres @ 0.8 % Cu and 1.0 g/t Au from 624 metres. This hole has extended the known high grade mineralisation at the lower part of the porphyry system. This hole will be followed up from the opposite direction (further up the decline) to define the outer margins of the mineralisation in this area.

Figure 9: Drill section I, showing drill hole UHGZ-21-072 along with open mineralised envelopes at depth and drilling intercept information.

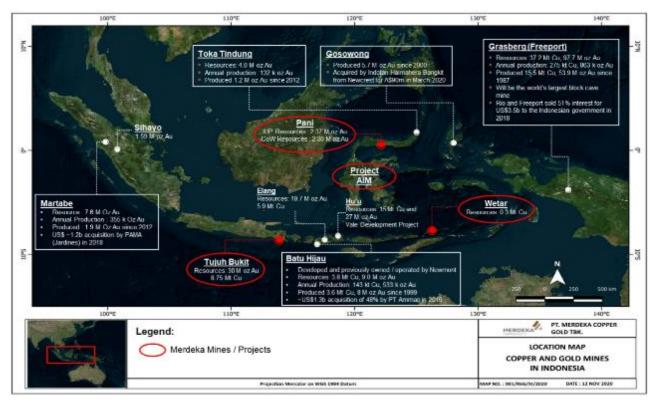
Ongoing Operations

Drilling operations are continuing for the TB Copper Project, with a further 60,000 to 70,000 metres of drilling scheduled for 2022.

Six Sandvik DE150 drill rigs are currently operating from the northern end of the exploration decline. One ID1800 drill rig is currently operating from surface to expedite the resource infill campaign where drilling from underground is less efficient, with a second surface rig undertaking a combination of resource definition drilling and geotechnical/hydrogeological drilling.

All rigs are drilling a combination of PQ3 and HQ3 sized core which provides excellent samples for resource definition, as well as sufficient material for various metallurgical, geotechnical, and hydrogeological test work. A seventh underground rig is scheduled to commence drilling in April.

ABOUT TUJUH BUKIT COPPER PROJECT


Location

The Project is located approximately 205 kilometres southeast of Surabaya, the capital of the province of East Java, Indonesia and 60 kilometres southwest of the regional centre of Banyuwangi.

Access to the project area is via multiple daily flights to Banyuwangi. From Banyuwangi, it is about 60 kilometres to the Tujuh Bukit mine site via sealed public roads.

Merdeka Copper Gold (IDX: MDKA)

Figure 7: Tujuh Bukit location, along with other major mines in Indonesia.

Geology & Resources

The Tujuh Bukit high-sulphidation Au-Ag deposit and deeper Cu-Au-Mo mineralisation is part of the Tujuh Bukit district in Southeast Java.

The mineralisation is related to a deep-seated sequence of tonalite porphyry intrusions and associated stock-works, which have intruded a basal sequence of volcanoclastic sandstones, siltstones and andesitic flows. A precursor diorite is crosscut by the outer margins of a diatreme breccia complex. The diatreme event and porphyry mineralisation is overprinted by high sulphidation alteration and associated mineralisation.

The most recent Mineral Resource estimate was released in December 2014, with the results tabulated below:

Category	Ore (million tonnes)	Copper (%)	Gold (grams/to nne)	Copper (kilo tonnes)	Gold (million ounces)
Measured	-	-	-	-	-
Indicated	-	-	-	-	-
Inferred	1,900	0.45	0.45	8,753	28.3
Total	1,900	0.45	0.45	8,753	28.3

Table 1: Tujuh Bukit Copper Project Resource at 0.2% Cu cut-off¹

NOTES

1. https://www.merdekacoppergold.com/en/assets/resources-and-reserves/

Table 2: Significant new drilling intersections

	Collar East	Collar North	Collar RL	D:	Azimuth	End of Hole	From	То	Interval	Cu	Au										
Hole ID	WGS84 50S	WGS84 50S	+5,000m ASL	Dip	WGS84 50S	Depth (metres)	(metres)	(metres)	(metres)	%	grams/tonne										
						795.4	282	768	486	0.5	0.3										
	174 000	9046170	4.045	-35	264.7	including	368	430	62	0.7	0.5										
UHGZ-21-058	174,092	9046170	4,945	-35	204.7	and	564	602	38	1.3	0.4										
							642	674	32	0.6	0.4										
						534.1	0	430	430	0.7	0.6										
UHGZ-21-064	174,390	9,046,028	4,969	-30	228.8	including	0	284	284	0.8	0.6										
						including	320	394	74	0.6	0.5										
						600.9	22	150	128	0.5	0.3										
	174 164	0.046.225	4,944	61	251.3	including	70	150	80	0.6	0.3										
UHGZ-21-065	174,164	9,046,235	4,944	-61	-01	-61	-61	-01	-01	-61	-01	251.3		312	458	146	0.8	1.2			
									including	354	446	92	1	1.6							
										965.4	0	34	34	0.4	0.3						
							312	468	156	0.6	1.0										
UHGZ-21-066	174,126	9,046,237	4,940	-44	-44	-44	-44	-44	-44	-44	-44	-44	-44	-44	4 276.2	including	342	436	94	0.8	1.2
							616	658	42	0.3	0.7										
							702	965.4	263.4	0.4	0.2										
						1,011	290	652	362	0.5	0.6										
						including	354	390	36	0.6	1.1										
UHGZ-21-067	174,140	9,046,164	4,748	-37	123.8	including	520	638	118	0.8	0.6										
							830	1011	181	0.4	0.3										
						including	964	1006	42	0.6	0.3										
						920.6	30	106	76	0.6	0.4										
UHGZ-21-068	174 164	0.046.225	4,944	-49	251.7	including	48	92	44	0.8	0.5										
0002-21-068	174,164	9,046,235	4,944	-49	201.7		288	522	234	0.5	0.7										
						including	322	420	98	0.7	0.7										

	Collar East	Collar North	Collar RL	Dia	Azimuth	End of Hole	From	То	Interval	Cu	Au
Hole ID	WGS84 50S	WGS84 50S	+5,000m ASL	Dip	WGS84 50S	Depth (metres)	(metres)	(metres)	(metres)	%	grams/tonne
							686	868	182	0.5	0.8
						including	746	844	98	0.6	0.9
						887.3	62	258	196	0.8	1.4
						including	62	202	140	1.1	1.7
UHGZ-21-069	174,273	9,046,012	4,961	-66	159.1		282	887.3	605.3	0.6	0.6
						including	282	438	156	0.7	0.9
						including	494	722	228	0.8	0.6
						978.7	414	470	56	0.2	0.2
UHGZ-21-070	174,139	9,046,164	4,947	-58	132		584	978.7	394.7	0.7	0.9
						including	624	954	330	0.8	1.0
						850.0	42	88	46	0.3	0.2
UHGZ-21-071	174,163	9,046,235	4,944	-33	250.7		350	682	332	0.4	0.4
						including	430	478	48	0.6	0.8
	474 267	0.046.013	4.064	45	240.7	693.1	98	693.1	595.1	0.9	1.0
UHGZ-21-072	174,267	9,046,012	4,961	-45	240.7	including	102	598	496	1.0	1.2
CTD 31 670	172 726	0.046.261	F 147	62	40.2	1,169.7	150	824	674	0.6	0.7
GTD-21-679	173,736	9,046,361	5,147	-63	49.3	including	292	530	238	0.9	1.2

(1) Reported at a 0.2 % Cu cutoff

(2) Minimum composite length of 30 metres

(3) Consecutive runs of samples (up to 30 metres) lower than the cutoff may be included in the reported intervals as internal dilution

COMPETENT PERSON'S STATEMENT – TUJUH BUKIT COPPER PROJECT

Exploration Results and Targets

The information in this report which relates to Exploration Activities and Exploration Results is based on, and fairly represents, information compiled by Mr Zach Casley, BSc (Hons). Mr Casley is full-time employee of PT Merdeka Copper Gold Tbk.

Mr Casley is listed as a CPI IAGI (#CPI-199), a Member of the Indonesian Geologists Association (ID: 7083B), a Member of a Masyarakat Geologi Ekonomi Indonesia (ID: B-1173), a Fellow of the Australian Institute of Mining and Metallurgy (ID: 112745), and a Member of the Australian Institute of Geoscientists (ID: 1451)

Mr Casley has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2017 Kode KCMI for Reporting of Exploration Results, Mineral Resources and Mineral Reserves, and the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves".

Mr Casley consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

JORC CODE, 2012 EDITION – TABLE 1 REPORT

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	 Half drill core samples are collected at two (2) metre intervals, core sizes sampled are PQ3, HQ3, and NQ3. Core recovery is recorded for every run, average recovery for the intervals included in this report are 95-98%. Where possible all core is orientated and cut along the orientation mark retaining down hole arrows. With the core rotated in the down hole position (i.e. orientation line towards the front of the core tray), the top half of the core is consistently sampled. Industry standard QAQC protocols included the insertion of certified OREAS standards, duplicates, and blanks. Samples are submitted to the lab for analysis in batches of 40 samples comprising; 35 x 2 metres composite core samples, 2 x standards (6%), 2 x coarse (2

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
	 Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg. 'reverse circulation drilling was used to obtain 1 meter samples from which 3 kilograms was pulverised to produce a 30 grams charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg. submarine nodules) may warrant disclosure of detailed information. 	 millimetres) duplicates (6%), and 1 x coarse blank. External checks and blind resubmissions to an umpire laboratory are at a rate of 1 in 20 (5%), using an additional split at the pulp stage. The same pulps are used for external checks and blind resubmissions, which are submitted with anonymously packaged certified standards. Analysis of QAQC results suggest sample assays are accurate. Core samples are weighed, then dried at 60°C, weighed, then the entire sample is crushed to P95% -2 millimetres in a Boyd Crusher with rotary splitter. A 1.5 kilograms split of this material is then pulverised to P95% -200#. Core samples are processed at Intertek's onsite sample preparation facility, approximately 200 grams pulverised material from each sample is transported direct from site to Intertek Jakarta for analyses. All exploration drill samples are analysed for gold using 30 grams fire assay, ICP 4-acid digestion with AAS finish, total sulphur (LECCO), sulphide sulphur, mercury by cold vapor method, and sequential copper analysis testing for acid and cyanide soluble copper. Standard multi-element analyses are used with ICP OES that includes silver and common pathfinder minerals in epithermal and porphyry systems. No adjustments or calibrations were made to any assay data used in reporting.
Drilling techniques	 Drill type (eg. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg. core diametre, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Diamond drilling method triple tube at sizes PQ3, HQ3, and NQ3. Where possible all core is orientated every run using a Reflex orientation tool. Down hole surveys are conducted with a Reflex camera every 25-30 metres down hole. All down hole tools are checked weekly.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery 	 Measurements of core loss and recovery are made at the drill rig, and entered into Geobank Database. Core is marked up relative to core blocks making allowance for any sections of lost core.

Criteria	JORC Code explanation	Commentary
	 and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 In some instances, short lengths of core are lost, generally around 5-10 centimetres at the end of a run. This loss occurs mostly in the clay dominant ore and waste domains. Drill runs are reduced to 1.5 metres or less in these areas to maximise core recovery. A null grade is assigned to core loss intervals. All core loss is clearly identified in the core trays by inserting a length of yellow plastic matching the area of core loss, and marked as "core loss". No grade is assigned to intervals of core loss in the database.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All drill core is geologically, geotechnically, and structurally logged. Logging fields include (but is not limited to) lithology, alteration, mineralisation, structure, RQD, RMR, and defect angles. Standard nomenclature is used for logging and codes or abbreviations are input directly into computerised logging sheets. BSI uses Geobank Mobile by Micromine as the front-end data entry platform to the SQL backend. The majority of geological and geotechnical logging is qualitative in nature except measured fields for structure (α and β), RQD and fracture frequency. All core is measured with an Equotip at 7.5 centimetre intervals, which are averaged and reported at 1 meter intervals. Point Load Testing is conducted every 25 metres on all holes. All core is scanned on site using CoreScan. Mineralogy is logged qualitatively. The length of core from holes being reported from the geotech and resource definition drilling is 5,669.1 metres, including surface and underground drilling. 100% of core was logged. There is no selective sampling, all core is logged and assayed. All drill core is photographed and scanned by CoreScan before cutting and sampling. Logging is of a suitable standard to allow for detailed geological and resource modelling.

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Core is cut with a saw and half core composites were collected at two (2) intervals. Half core samples were methodically marked up, labelled, cut and prepared at the company's core processing facility on site under geological supervision. Two (2) metre compositing is appropriate for the broad style of porphyry-type related mineralisation. The entire half core 2 metres sample is crushed to -6 millimetres in a terminator crusher, then crushed to -2 millimetres in a Smart Boyd crusher with rotary splitter. The first sub sampling is via the Boyd Rotary Splitter, which is set to provide a 1.5 kilograms sub sample for pulverisation to -75 microns in 2 x Labtechnics LM2 pulverisers. 200 grams of material is representatively scooped after the LM2 bowl is emptied onto a rolling sampling mat. This material is sent to ITS Jakarta for analysis. Duplicate assaying is carried at a frequency of 6%, with 2 millimetres coarse reject duplicate spits. Heterogeneity analysis shows a high level of repeatability. Mineralogical analyses including MLA (mineral liberation analyses) shows gold grains to be 10s of microns in size. Disseminated copper mineralisation shows a range from very fine to coarse grain size. Sample size (2 metres half core) and partial sample preparation protocols are considered appropriate for this style of mineralisation.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometres, handheld XRF instruments, etc, the parametres used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg 	 The bulk nature of the sample size (2 metres) and partial preparation procedures (total crush to P95 -2 millimetres, 1.5 kilograms split pulverized to P95 -200#) is considered appropriate for this style of mineralisation. Four acid total dissolution is used for assaying. SWIR data is collected on some of the core and assay pulps. The TerraSpec device used is serviced and calibrated yearly at an accredited facility in Australia and routine calibration is done when samples are being analyzed. Hyperspectral logging is carried out on site by CoreScan, calibrations are carried out before every core tray is analysed.

Criteria	JORC Code explanation	Commentary
	standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 Industry standard QAQC protocols included the insertion of certified OREAS standards, duplicates, and blanks. Samples are submitted to the lab for analysis in batches of 40 samples comprising: 35 x 2 metres composite core samples; 2 x standards (6%); 2 x course reject duplicates (6%); and 1 x coarse blank. External checks and blind resubmissions to an umpire laboratory are at a rate of 1 in 20 (5%). Analyses of laboratory replicate assays and duplicate assays show a high degree of correlation. Analyses of Standards show all assay batches to be within acceptable tolerances.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections have been verified by alternative senior company personnel. The drill holes being reported are exploration in nature and have not been twinned. Primary assay data is received from the laboratory in soft-copy digital format and hard-copy final certificates. Digital data is stored on a secure SQL server on site with a back-up copy off site. Hard-copy certificates are stored on site in a secure room. There is no adjustment to assay data (for example, no averaging Au analysis).
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collars are surveyed by total station. The Grid System used is WGS84 UTM 50 South. The topographic surface is surveyed by LIDAR and supplemented by Total Station and DGPS surveys.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether sample compositing has been applied. 	 Drill hole spacing ranges from 300m to 80m in more densely drilling areas. Results reported have been composited, composite grades are weighted average grades with no top cuts applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is 	 Sampled drill holes were designed in 3D to intersect mineralisation at a range of orientations to assess and accommodate potential orientation of mineralisation and structures, while maintaining appropriate spacing between holes. The

Criteria	JORC Code explanation	Commentary
	 known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	orientation of samples relative to structural controls is not considered to introduce a sampling bias.
Sample security	 The measures taken to ensure sample security. 	 All core samples are bagged separately into calico bags then dispatched immediately to the on-site sample preparation facility operated by Intertek. The core shed has 24-hour security guards, and is fully covered by CCTV. The ITS preparation facility has separate swipe card access to maintain clear chain of custody. After sample preparation, 200 gm aliquots are securely packed and couriered via air freight to ITS Jakarta for analysis.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 Dr Francois-Bongarçon (Agoratek International) is engaged to conduct regular reviews and audits of sampling, QAQC, site and external laboratories, and plant samplers, as well as training and improvement initiatives. He has provided input into the design of the prep facility and sample size. His most recent site visit was in November 2019. AMC were engaged to oversee the entire process from drill design, executing the drilling, data collection at the rig and core shed, sample preparation, analysis, and QAQC. AMC have made a number of recommendations to align with best practice and these recommendations have been incorporated, and indicate that the site processes is best practice. AMC have visited the site approximately every six months to confirm the procedures are being followed. The last AMC visit was March 2020.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or materia issues with third parties such as joint ventures partnerships, overriding royalties, native title interests, historical sites wilderness or nationa park and environmenta settings. The security of the tenure held at the time o reporting along with any known impediments to obtaining a licence to operate in the area. 	 subsidiary, PT BSI, owns the Mining Business License (IUP) for Operation and Production for the Tujuh Bukit Project and covers an area of 4,998 hectares. The IUP for Operation and Production is valid for an initial 20 (twenty) years and is extend-able by way of 2 (two) distinct 10 (ten) year options. A wholly owned subsidiary of PT BSI, PT Damai Suksesindo, holds an adjoining IUP Exploration covering an area of 6,558.46 hectares.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	, , ,
Geology	 Deposit type, geologica setting and style o mineralisation. 	Tujuh Bukit is classified as a high-level

Criteria	JORC Code explanation	Commentary
		 enhanced and overprinted by telescoped high-sulphidation epithermal copper-gold mineralisation. The high-sulphidation mineralisation has been strongly oxidized near-surface.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes. 	• Refer to above figures & tables.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 The reported results are the weighted average calculated over the composited interval with no top or bottom cut applied. To delineate the extents of the broader intercepts reported a nominal grade boundary of 0.2 % Cu and or 0.2 parts per million Au was used. Shorter high-grade aggregate intercepts are selected where a clear grade break is visible in the data; these breaks can coincide with interpreted domain boundaries where domains are identified by having different alteration styles. Metal equivalent values are not used.
Relationship between mineralisation widths and	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with 	 Refer to above figures. Holes reported are drilled at various angles to assess and accommodate mineralised geometry. Some holes

Criteria	JORC Code explanation	Commentary
intercept lengths	respect to the drill hole angle is known, its nature should be reported.	are drilled sub parallel to the long axis of mineralisation.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	were reported to the ASX in 2008 - 2012 by Intrepid Mines Ltd.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). 	results will take place in 2020 with up to 50,000 metres of additional drilling from the exploration decline.

Criteria	JORC Code explanation	Commentary
	 Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	

For further information please contact:

Mr. Simon Milroy (Vice President Director) PT Merdeka Copper Gold Tbk The Convergence Indonesia 20th Floor Jl. H.R. Rasuna Said, Karet Kuningan, Setiabudi Jakarta 12940 - Indonesia T: +62 21 2988 0393 E: <u>investor.relations@merdekacoppergold.com</u>

About PT Merdeka Copper Gold Tbk.

PT Merdeka Copper Gold Tbk ("Merdeka"), a holding company with operating subsidiaries engaging in mining business activities, encompassing: (i) exploration; (ii) production of gold, silver, copper (and other related minerals); and (iii) mining services.

The company's current major assets are the: (i) Tujuh Bukit Copper Project; (ii) Pani Gold Project; (iii) Wetar / Morowali Acid Iron Metal Project; (iv) Tujuh Bukit Gold Mine and; (v) Wetar Copper Mine.

The Tujuh Bukit Copper Project deposit is one of the world's top ranked undeveloped copper and gold mineral resources, containing approximately 8.7 million tonnes of copper and 28 million ounces of gold.

As a world-class Indonesian mining company, Merdeka is owned by prominent Indonesian shareholders including: PT Saratoga Investama Sedaya Tbk., PT Provident Capital Indonesia and Mr. Garibaldi Thohir. Merdeka's three major shareholders have exceptional track records in successfully identifying, building, and operating multiple publicly listed companies in Indonesia.

Refer to the Annual Statements of Mineral Resources and Ore Reserves on www.merdekacoppergold.com